Integrated Photonic Spectrometer for Sustainable Land Imaging - Technology

THE VALUE OF PERFORMANCE
NORTHROP GRUMMAN

June 11, 2019

Stephanie Sandor-Leahy (PI/PM) Richard Davis, Augusto Gutierrez-Aitken, Dan Kultran, Lushalan Liao, KK Loi, Wayne Yoshida

Hyperspectral Imaging

LongWave IR

HSI

Landsat

Visible

[microns]

Hyperion VNIR/SWIR, Class D; less than 12 months to delivery; more than 16 years on orbit

Full Hyperspectral Analysis

White Pine

Analysis by Mary Martin University of New Hampshire

Norway Spruce Red Pine

Spruce Swamp

Hardwood Bog

Courtesy of CSIRO, Australia

Mimic MSI through Band Aggregation

MidWave IR

ShortWave IR

Band-Selectable Output

Photonic Integration Enables HSI Acquisition in an NORTHROP GRUMMAN Extremely Compact Package

Micro-fabricated photonic filters and 100mm Si Wavequide integrated photodetectors replace freewafer space optics - enables sensor integration at microelectronic device scales yielding miniature instrument packages

Integrated spectrometer manufacturing uses standardized, repeatable microelectronic processes – enables rapid and inexpensive patterning and reproduction

Significantly reduces size of instrument – small enough to allow integration on any platform and along-side existing payloads (including shared apertures)

Sustainable Land Imaging –Technology Program

- NG is currently executing a 5-year development program funded by the NASA Earth Science Technology Office to build and test a heterogeneously integrated photonic instrument
 - Covers two SLI bands: Band 9 (1.36) - 1.39µm at 3nm resolution) and Band 6 $(1.56 - 1.66 \mu m)$ at 6nm resolution). Demonstrating:
 - Scalability to SLI VNIR and SWIR bands
 - and testing

Planned exit TRL = 6 in September 2021

Full-Field Integration

Detector Chiplet

Detector array

Chiplet backside

Interconnect traces

Chiplet frontside

Approved for Public Release; NG19-0992

Electrical Interconnects (eHICs)

Detector – ROIC Integration

 Our integration processes have resulted in consistently high accuracy detector placement (within 0.2 µm) in the PLC

Mechanical ROIC Layout and Fab

Detector to Waveguide Integration

Integrated PIC – Detector – ROIC Configuration

ROIC Development

- Program is developing custom CMOS digital Readout Integrated Circuit chiplets
- ROIC requirements derived from SLI-T system requirements and sensor-level radiometric performance estimates
- Designs optimized by trading signal to noise ratio and dynamic range against size, power, complexity, and risk
- Test coupons were fabricated containing unit cells with multiple architectures and component designs
- Unit cells were mounted on a custom break-out board for testing
- Actual and predicted ROIC performance were compared and designs optimized

Unit Cell Characterization Board

Design Variant #1 Test

Design Variant #2 Test

ROIC Interconnect

ROIC Face Up: Common I/O for ROIC Variants

 Metallization on ROIC and Waveguide layer were jointly optimized to enable a closelyspaced tiling arrangement

CMOS Reticle & Dedicated Wafer

Two Digital ROIC Variants are Currently in Fabrication

Waveguide Design Optimization

- Waveguide performance impacted by fabrication process limitations
- Current program effort is focused on optimization of waveguide design geometries as driven by fabrication process capabilities
- Completed an extensive model development effort validated 2-D and 3-D models which are used to test impact of various design parameters on waveguide throughput

Throughput Comparisons for Waveguide Optimization

Transition Length vs Radius of Curvature: Comparing Circular and Elliptical Merge Geometries for Waveguide Input Arm

NORTHROP GRUMMAN

Fabrication of Updated Waveguide Near Completion

 New waveguide geometries are being fabricated - optimized to mitigate process limitations

Summary

- Completed initial prototypes: designed, fabricated, integrated, and tested devices with initial waveguide and detector designs
- Significant progress on fabrication process development
 - Demonstrated numerous successful integrations
 - Optimized etch processes (waveguide and detector)
- Completed ROIC design
 - Unit cells fabricated and tested
 - Final design in fabrication
- Developed validated 3-D waveguide models and carried out extensive design optimization efforts
- Fabricated optimized waveguide geometries preparing devices for test

Acknowledgement

We would like to thank NASA ESTO for the valuable review, interactions, comments and continued support through SLI-T grant 80NSSC18K0107

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN